其他
【067】遗漏因子、缺失数据与多重检验
1. 简介
2. 研究问题
3. 分析方法
首先是获取基金的因子暴露估计。具体而言,用通过每支基金收益对可观测因子的时序回归,获取对可观测因子的暴露以及残差,然后对(不同基金的)残差矩阵套用 Giglio and Xiu (2019) 的三步法的 PCA 环节,来获取对不可观测因子的暴露。 接下来是获取因子溢价的估计,即通过基金(时序)平均收益对因子暴露的截面回归,获取所有因子的因子溢价估计。 最后是基金 alpha 的估计,用基金平均收益减去因子暴露与因子溢价的乘积即可。
4. 结语
Andrikogiannopoulou, Angie, and Filippos Papakonstantinou. "Reassessing false discoveries in mutual fund performance: Skill, luck, or lack of power?." Journal of Finance 74.5 (2019): 2667-2688. Barras, Laurent, Olivier Scaillet, and Russ Wermers. "False discoveries in mutual fund performance: Measuring luck in estimated alphas." Journal of Finance 65.1 (2010): 179-216. Giglio, Stefano, and Dacheng Xiu. "Asset pricing with omitted factors." Chicago Booth Research Paper 16-21 (2019). Giglio, Stefano, Yuan Liao, and Dacheng Xiu. "Thousands of alpha tests." Review of Finance Studies forthcoming (2020). Harvey, Campbell R., Yan Liu, and Alessio Saretto. "An evaluation of alternative multiple testing methods for finance applications." Review of Asset Pricing Studies 10.2 (2020): 199-248. Harvey, Campbell R., and Yan Liu. "False (and missed) discoveries in financial economics." Journal of Finance 75.5 (2020): 2503-2553.